Logo der Universität Erlangen-Nürnberg

Archiv Pressemitteilungen

 
feierliche eröffnung
 

Feierliche Eröffnung mit Gästen aus Politik, Wissenschaft und Wirtschaft
Neue Max-Planck-Forschungsgruppe an einer Universität

Die Max-Planck-Forschungsgruppe, für Optik, Information und Phototonik an der Universiät Erlangen-Nürnberg, wird am Montag, 15. März 2004, ab 11.00 Uhr in Erlangen im Beisein hochrangiger Vertreter aus Politik, Wissenschaft und Wirtschaft offiziell eröffnet. Die Festrede wird der bayerische Wissenschaftsminister Dr. Thomas Goppel im neuen Institutsgebäude in der Günther Scharowsky-Straße 1/Siemensgebäude, Bau 24, halten. Nach der Eröffnung besteht für Medienvertreter und Gäste Gelegenheit zu einem Rundgang durch das neue Gebäude.

Die Erlanger Max-Planck-Forschungsgruppe für Optik, Information und Photonik ist ein zunächst auf fünf Jahre befristetes Gemeinschaftsprojekt des Freistaats Bayern und der Max-Planck-Gesellschaft, das als Institut der Universität Erlangen-Nürnberg geführt wird. Ziel der Forschungsgruppe ist es, die gesamte Bandbreite der modernen Optik von der klassischen Optik bis zur Quantenkommunikation unter einem Dach zu vereinen. Die Einrichtung der Max-Planck-Forschungsgruppe wird von der Universität Erlangen-Nürnberg als eine große Bereicherung für ihre Optikforschung, aber auch als ein wichtiges Signal für die gesamte Region Nordbayern angesehen.

Die Erlanger Max-Planck-Forschungsgruppe für Optik, Information und Photonik ist ein zunächst auf fünf Jahre befristetes Gemeinschaftsprojekt des Freistaats Bayern und der Max-Planck-Gesellschaft, das als Institut der Universität Erlangen-Nürnberg geführt wird. Ziel der Forschungsgruppe ist es, die gesamte Bandbreite der modernen Optik von der klassischen Optik bis zur Quantenkommunikation unter einem Dach zu vereinen. Die Einrichtung der Max-Planck-Forschungsgruppe wird von der Universität Erlangen-Nürnberg als eine große Bereicherung für ihre Optikforschung, aber auch als ein wichtiges Signal für die gesamte Region Nordbayern angesehen.

Zur feierlichen Eröffnung der gemeinsamen Forschungseinrichtung können der Präsident der Max-Planck-Gesellschaft, Prof. Peter Gruss, und der Rektor der Universität Erlangen-Nürnberg, Prof. Karl-Dieter Grüske, namhafte Gäste begrüßen. Als Gastredner für den Festakt konnten der bayerische Kultusminister Dr. Thomas Goppel, der Erlanger Oberbürgermeister Dr. Siegfried Balleis, Dr. Peter Krause vom Bundesministerium für Bildung und Forschung sowie Prof. Erich Reinhardt, Mitglied des Siemens-Vorstands, gewonnen werden. Die Kooperation mit Siemens ist für die Max-Planck-Gesellschaft von besonderer Bedeutung, da die neue Forschungsgruppe in einem Gebäude auf dem Siemens-Forschungsgelände angesiedelt ist, das speziell für diesen Zweck umgebaut wurde. Dort stehen der Forschungsgruppe, die bis zu 100 Mitarbeiter beschäftigen wird, 2.600 Quadratmeter Nutzfläche zur Verfügung.

Nach der feierlichen Eröffnung veranstaltet die Forschungsgruppe unter dem Titel „Frontiers in Modern Optics“ ein hochrangig besetztes wissenschaftliches Symposium zu Fragestellungen der modernen Optik. Namhafte Wissenschaftler aus Europa, den USA und Japan nehmen daran teil, darunter Charles H. Townes und Emil Wolf, zwei der renommiertesten amerikanischen Wissenschaftler auf dem Gebiet der Optik. Charles H. Townes bekam 1964 den Nobelpreis für die Erfindung des Lasers, Emil Wolf ist den meisten Physikern als Koautor des internationalen Fachbuchs „Principles of Optics“, das bereits in der 6. Auflage erscheint, ein Begriff. Weitere Informationen zum Programm des Symposiums finden sich im Internet unter http://www.optik.uni-erlangen.de/leuchs/aktuelles.html

Die Max-Planck-Forschungsgruppe umfasst drei Abteilungen. Abteilung I leitet Prof. Gerd Leuchs, dessen Lehrstuhl an der Universität Erlangen-Nürnberg in die Max-Planck-Forschungsgruppe integriert wurde. Die Leitung der Abteilung II hat Prof. Lijun Wang übernommen, der in den letzten zehn Jahren an bedeutenden Forschungseinrichtungen in den USA geforscht hat, zuletzt am NEC Research Laboratory in Princeton. Das Berufungsverfahren für die Abteilung III soll im Lauf des Jahres 2004 abgeschlossen werden.

Abteilung I: Erforschung neuer optischer Methoden
Die Forschungsarbeiten der Abteilung I (Prof. Gerd Leuchs) verteilen sich über ein weites Spektrum der modernen Optik. Anhand optischer Technologien wie der Interferometrie sowie trigonometrischer Verfahren entwickeln die Wissenschaftler Methoden, mit deren Hilfe man die dreidimensionale Form von Körpern mit optisch glatten oder auch rauen Oberflächen bestimmen kann. Die dazu untersuchten Objekte reichen von einer Statue aus dem Bamberger Dom bis hin zu asphärischen Linsen für die Lithographie mit extrem ultraviolettem Licht. Ziel ist es hierbei sowohl neue Methoden zu entwickeln als auch deren Messempfindlichkeit und Präzision zu erhöhen. Dazu gehört die Entwicklung und der Bau neuer mikrooptischer Instrumente. Ein weiteres Forschungsgebiet sind die Eigenschaften optischer Felder auf der Wellen- und Subwellenlängen-Skala sowie ihre Wechselwirkungen mit kleinen Strukturen, auch als „Nano-Photonik“ bekannt. Die Nanophotonik ist für die Mikroskopie, die Lithographie, die optischen Datenträger sowie die Quanteninformation von großer Bedeutung. Hier wollen die Forscher möglichst rasch bestehende Erkenntnisgrenzen überwinden.

Viele dieser Forschungsgebiete haben Relevanz sowohl für die Grundlagenforschung als auch für Hightech-Anwendungen. So untersucht man in einem Projekt quantenkorrelierte intensive Lichtfelder, beispielsweise als Solitonen (zeitliche Pulse, die sich ausbreiten, ohne ihre Form zu ändern). Solitonen werden einerseits dazu genutzt, um in der Grundlagenforschung das Einstein-Podolsky-Rosen-Gedankenexperiment für kontinuierliche Quantenvariablen umzusetzen. Darauf aufbauend untersucht man Quantenkommunikationsprotokolle, die zum Beispiel an der sicheren Verteilung kryptographischer Verschlüsselungskodes beteiligt sind. Der gleiche experimentelle Aufbau dient aber auch dazu, neuartige Instrumente für eine Telekommunikationstechnik mit aus-schließlich optischen Übertragungskomponenten zu entwickeln - ein Beispiel dafür, wie fließend der Übergang zwischen Grundlagenforschung und Anwendung sein kann.

Abteilung II: Erforschung der „optischen” Atomuhr
In der im Aufbau befindlichen Abteilung II von Prof. Lijun Wang konzentriert man sich auf die Forschung im Bereich der Laserwissenschaften, -technologien und ihre Anwendungen. So versuchen die Forscher mit einem einzelnen eingefangenen Indium-Ion als Quantenoszillator die Frequenz eines ultrastabilen Lasers zu regulieren und - darauf aufbauend - eine Atomuhr zu bauen, die mit Hilfe eines optischen Frequenzstandards arbeitet. Eine solche „optische Atomuhr“ bietet zahlreiche Vorteile gegenüber konventionellen Radiofrequenz-Atomuhren. Außerdem dürfte die auf einem Indium-Ion basierende optische Uhr eine drei Größenordnungen genauere Präzision als die derzeit genauesten Atomuhren erreichen, gleichzusetzen mit einer Messunschärfe von nur 30 Pikosekunden pro Jahr. Zudem bietet das gefangene Einzel-Ion ein sauberes und kontrollierbares quantenmechanisches System, in dem neue Erkenntnisse über die Quantenwelt überprüft werden können.
Auf die Optik als Mittel zur Präzisionsmessung gestützt, wollen die Wissenschaftler aber auch ein hochgenaues absolutes Schwerkraftmessgerät konstruieren, um Variationen der Erdanziehungskraft in Echtzeit messen zu können. Ein Projekt, das in enger Zusammenarbeit mit dem Bundesamt für Kartographie und Geodäsie durchgeführt wird. Im Bereich der Materialverarbeitung sollen Experimente einem intensiven Ultrakurzpulslaser durchgeführt werden: Ein fokussierter, gepulster Laser kann die optischen Eigenschaften transparenter Stoffe, wie etwa Glas, permanent verändern. Das ermöglicht es, verschiedene optische Strukturen für zukünftige Anwendungen in der Telekommunikation zu entwerfen und zu erzeugen. Darüber hinaus sollen neue Einsatzmöglichkeiten für Laser in der Biologie und Medizin erforscht werden.

Abteilung III: Erforschung neuartiger optischer Materialien
Die künftige Abteilung III wird sich vorrangig der Erforschung neuartiger optischer Materialien, mit Techniken zur Mikrostrukturierung derartiger Materialien sowie mit den physikalischen Eigenschaften von räumlich stark begrenztem Licht widmen.

Weitere Informationen

Dr. Sabine König
Max-Planck-Forschungsgruppe für Optik, Information und Photonik
Tel.: 09131/6877-500
Fax: 09131/6877-199
E-Mail: sabine.koenig@optik.uni-erlangen.de

 

Mediendienst FAU-Aktuell Nr.3531 vom 10.03.2004

nach oben

 


zentrale universitätsverwaltung, pressestelle --- zuletzt aktualisiert am Wednesday, 29-Dec-2004 09:18:53 CET